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Abstract. The electron-density distribution in CaNi2Si2 has been analysed by means of x-ray
diffraction measurements and a full-potential augmented-plane-wave band-structure calculation.
The agreement between experiment and theory is good, considering the difficulty of the experiment.
A Si–Si bonding interaction is clearly observed in the valence electron distribution as well as a
preferred occupation of the Ni 3d orbitals.

1. Introduction

The ThCr2Si2-type structure (I4/mmm, space group No 139) [1] is one of the most frequently
observed structures in ternary compounds with the formula RT2X2 (R: alkaline earth or
lanthanide element; T: transition metal; X: element from group 13 to 16). During the past
few decades, quite a number of physical observations and studies have been devoted to
these compounds [2], investigating features such as superconductivity, valence fluctuation,
mixed valency [3] and heavy-fermion behaviour [4], as well as a wide range of magnetic
properties [5–8]. If the magnetism of the silicides is considered, among the transition
metals only Mn carries a magnetic moment, but strong transferred hyperfine fields have been
observed in Fe when R is a lanthanide element, showing that iron is nearly magnetic in these
compounds. This emphasizes the importance of the filling of the 3d band for the magnetic
properties. As regards the Mn-based compounds, a great variety in the magnetic behaviour
has been observed, ranging from ferromagnetism to antiferromagnetism and canted magnetic
structures, some of which exhibit a transition from ferromagnetism to antiferromagnetism
when the temperature increases. This may result from a complex Fermi surface which
may be very sensitive to the interatomic distances, as proved by the recent magnetic study
of the La1−xYxMn2Ge2 solid solution [9], where the magnetic ground state evolves from
ferromagnetism to antiferromagnetism when x increases. Hence, seven different Mn-sublattice
magnetic arrangements have been encountered in the x–T diagram [9].
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The RT2X2 structure is layered, with R–X–T2–X–R–X–T2–X–R planes stacked along the
c-axis. All of the atoms are located at special positions, R at 2a (0, 0, 0), T at 4d ( 1

2 , 0, 1
4 )

and X at 4e (0, 0, z) with z always close to 0.37, and consequently the distances mainly
depend on the a- and c-parameters. The understanding of the magnetic properties now requires
complete knowledge of the band structure. Some band-structure calculations were based on
an extended Hückel method [10], but a self-consistent calculation using the KKR method
with an exchange–correlation potential using the local spin-density approximation was carried
out on YMn2Ge2, LaMn2Ge2 and LaCo2Ge2 [11]. The calculated magnetic moment of Mn in
LaMn2Ge2 significantly differs from the experimental value. Recently, calculations concerning
CaFe2P2, CaNi2P2, SrFe2P2 and BaFe2P2 [12, 13] used the full-potential augmented-plane-
wave (FLAPW) method [14] with a Hedin–Lundqvist exchange–correlation potential [15].
The band structures of these latter compounds are qualitatively similar for the transition metal
3d bands.

Our aim is an experimental determination of the electron density of the RT2X2 compounds
for different fillings of the 3d band using x-ray diffraction experiments. These results are
compared with theoretical studies, and they may provide the distribution of the 3d electrons
over the different orbitals and then the anisotropy of the electron density. In the present
paper, we report on the first experiment performed on the paramagnetic compound CaNi2Si2.
The reliability of the results is considered and, especially, the consequence of the lack of
sensitivity of the diffraction experiment to diffuse electron-density distributions is discussed.
The experimental results are also compared with results from a FLAPW calculation.

2. Experimental procedure

The sample was prepared from commercially available high-purity elements: Ca (pieces,
99.9%), Ni (powder, 99.99%) and Si (pieces, 99.99%). A pellet of stoichiometric mixture was
melted in an induction furnace and annealed for ten days at 1273 K.

A single crystal was extracted from the resulting ingots and studied first on a Weissenberg
camera (Cu Kα). It had an irregular shape with a maximum dimension of about 0.03 mm.

The intensity data were collected at HASYLAB on the four-circle diffractometer D3 at
room temperature.

Because of the very small size of the sample, reflected intensities were very weak, no
primary beam attenuation was needed and the counter dead-time corrections were negligibly
small. The incident beam intensity was monitored by two detectors (count rates: Ch and
Cv) which allows a correction for its total intensity fluctuations and for fluctuations of its
polarization ratio. These corrections were applied to each individual profile according to

Icorr = IintegrS/LP

with

LP = (1 +Q) + (1 −Q) cos2 2θ

2 sin 2θ

S = 1

〈Ch〉 + 〈Cv〉

Q = 〈Ch〉 − 〈Cv〉
〈Ch〉 + 〈Cv〉 .

S scales the intensities according to the total monitor counts, LP is the Lorentz and
polarization correction.
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In addition to the direct monitoring of the incident x-ray beam, the intensities of two
standard reflections were measured every 40 minutes. Their variations were described by a
cubic spline function allowing an average deviation of 1.67 standard deviations from the fit,
and the data corrected in consequence thereof.

The experimental conditions are summarized in table 1.

Table 1. Experimental conditions.

Wavelength (Å) 0.399

Unit-cell parameters (Å):
a 3.987(1)
c 9.672(2)

Scan mode ω-step scan
Steps per scan 81
Step width 0.012◦

Counting 1 s/step
Standard reflections 040 and 228
Maximum 2ϑ 60◦

((sin ϑ)/λ)max 1.09 Å−1

Total number of reflections 3103
Number of unique reflections 283

Internal agreement indicesa:
Rw 4.0%
Z 0.85

a Rw is an R-factor and Z a normalized χ2-estimator [16].

Collecting a full sphere of data means that between 8 and 16 equivalents or duplicates were
measured for most of the unique reflections, and each one at very different times during the
experiment. The computer program SORTAV [16] was used for the merging of the equivalent
reflections. The agreement between the estimated standard errors of the individual reflection
intensities and the dispersion among equivalent reflections was good, as indicated by the χ2-
estimator.

3. Crystal structure and electron-density modelling

In CaNi2Si2, all the atoms occupy special positions, which has the consequence that the
structure factor expression may be simplified for different groups of reflections, and, as we
shall see, results in there being certain limitations on what information can be reliably extracted
from the x-ray diffraction intensities.

In figure 1 one unit cell is shown. The following structural characteristics should be
stressed:

• The shortest Ni–Ni distance is 2.819 Å.

• The nickel atoms are tetrahedrally coordinated by silicon at a distance of 2.312 Å.

• The silicon atoms can be considered to have a square-planar pyramidal coordination (four
Si in the base and another Si at the top); the shortest Si–Si distance (2.49 Å) is almost as
short as in pure silicon single crystals (2.35 Å).

• The Ca coordination may be considered tenfold with respect to the Si atoms (this is only
of marginal interest for our discussion).
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Ca

Ni
Si

Figure 1. The unit cell of CaNi2Si2.

The positions of the atoms in the cell are

Ca: 0, 0, 0

Ni: 1
2 , 0, 1

4

Si: 0, 0, z with z ≈ 3
8 .

In our study we find z = 0.3711(1).
For the analysis of the x-ray data we use a so-called multipole model [17]; the total electron

density is written as the sum of atomic-like densities, ρk , each given by a limited expansion in
spherical harmonic functions in real form† which, when multiplied by a radial function Rkl ,
form a ‘multipole’.

For Ni,

ρNi(r) = ρNi,core(r) + PNi 4s ρNi 4s(r) +
4, l even∑

l=0

κ ′3ρNi 3d(κ
′r)

l∑

m=−l
PNi lmylm(r/r).

The only terms contributing to the density because of the site symmetry (4̄m2) are (l, m) =
(0, 0), (2, 0), (3, 2+), (4, 0) and (4, 4+). We neglect the possible contribution from (3, 2+)
(see below).

For Si,

ρSi(r) = ρSi,core(r) + PSiV κ
3ρSi,valence(κr) +

4∑

l=1

κ ′3RSi l(κ
′r)

l∑

m=−l
PSi lmylm(r/r)

which has a site symmetry 4mm, the contributing multipoles are (l, m) = (0, 0), (1, 0), (2, 0),
(3, 0), (4, 0) and (4, 4+). ρNi,core, ρSi,core, ρNi 4s, ρNi 3d and ρSi,valence are spherically averaged
Hartree–Fock core and valence electron densities of the appropriate atom orbitals; ρSi,valence is
the average of the 3s and 3p orbitals of the ground state of the isolated atom.

For silicon we adopt functions of the form RSi l(r) ∼ rnl exp(−ζ r), whereas for Ni we
use the square of the radial part of the 3d Hartree–Fock orbitals [18] for l even. κ and κ ′

control a possible expansion/contraction of the radial functions. Pk V and Pk lm are expansion
coefficients (population parameters). The spherical harmonic functions are expressed relative
to orthonormal coordinate systems which, for all of the atoms, have been chosen with their
axes parallel to the unit-cell axes.

The thermal motions of the atoms are treated within the convolution approximation, and
supposed to be harmonic.

† ylm is a product of an associated Legendre polynomial multiplied by a cosine or sine function when m is positive
or negative, respectively.
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The form factors corresponding to the above atomic electron-density expressions take
much the same form [17]. In the multipole expansion we may distinguish two types of term
depending on the parity under inversion, and denote the corresponding contributions to the
form factor as f c and f ac, such that the form factor takes the form: f = f c + if ac [19]. This
division also corresponds to the parity of the order l of the multipoles.

According to the value of the reflection index l, the structure factor may be expressed as
follows:

(i) h + k odd and l = 8n± 1 (intensity very weak):

F(H) = 2fCa − 4f acNi − 2
√

2f cSi ± 2
√

2f acSi .

(ii) h + k odd and l = 8n± 3 (medium intensity):

F(H) = 2fCa + 4f acNi + 2
√

2f cSi ± 2
√

2f acSi .

(iii) h + k even and l = 4n (intensity strong):

F(H) = 2fCa + (−1)h 4f cNi + (−1)n 4f cSi.

(iv) h + k even and l = 4n + 2 (intensity strong):

F(H) = 2fCa − (−1)h 4f cNi − (−1)n 4f cSi.

Looking at the actual data, the measured intensities of the first group of reflections are hardly
ever found to be significantly different from zero and, compared to the structure factors
calculated from the refined models, they are often too strong (we will return to this point).

In the final model we assumed the calcium contribution to be that of the free divalent ion.
No other scheme significantly improved the fit to the data.

For Ni we consider that the centrosymmetric component of the valence density can be
decomposed into a contribution from atomic-like 3d–3d orbital products, a diffuse valence
contribution arising from 4s- and 4p-like states and, finally, 4s–3d orbital products due to
hybridization. Except for the first term, these will affect the diffraction very faintly, and we
do not take them into account. f acNi will arise from 3d–4p-like orbital products which are also
expected to be diffuse and thus not contribute much to the diffraction. It is to be stressed that
f cNi and f acNi contribute to different reflections, thus making a separation of the effects safer.

The valence shell electron density of silicon is rather diffuse and contributes little to the
scattering of the x-rays. Having no precise idea of the actual oxidation state of these atoms, it
is difficult to make an a priori guess about reasonable radial functions in the multipole model,
and the refinements lead to parameters with quite large standard deviations. We therefore used
two criteria for establishing a multipole model density: refinements were carried through to
convergence for different radial functions Rl ; and a posteriori we tested whether the valence
density was positive. An optimum result was obtained for:

nl = 4, 4, 6, 8 for l = 1, 2, 3, 4 and ζ = 2.0 Bohr−1.

One of the basic problems with this structure is that the calcium ions contribute with full
weight to all reflections, and to a vast extent overshadow finer details in the electron-density
distribution of the other atoms.

In the final refinements, the following parameters were optimized: anisotropic thermal
displacement parameters (two per atom because of the site symmetries); the z-coordinate of Si;
the multipole populations corresponding to the Ni 3d orbital products (four parameters); and
the radial contraction parameter κ ′. Furthermore, so were all site-symmetry-allowed multipole
populations of Si (4mm symmetry), i.e. five parameters in addition to a κ .
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In table 2 we give the agreement indices of the final multipole model. A comparison with
a standard ‘independent-atom model’ shows that the data do contain information going beyond
this rather primitive description of the electron density in the crystal.

For the multipole refinement we have given the results (i) when only refining the reflections
having an intensity which is significantly above zero (I > 3σ(I)) and (ii) when refining all
measured reflections. We note that the parameters resulting from these two refinements agree
within their random errors.

Table 2. Agreement indices. (Notes: IAM: results for independent-atom form factors. Standard
agreement factors as calculated with the structure factor moduli R(F), with their squares R(F 2)

or using the weighting scheme Rw(F 2) in the refinement. ‘G.o.F.’ is the root of the normalized
χ2-deviation between observed and calculated squares of the structure factors (F 2).)

Multipole model

IAM I > 3σ(I) All data

R(F) (%) 1.7 1.4 5.2
R(F 2) (%) 2.2 1.5 1.9
Rw(F

2) (%) 2.4 1.7 1.8
G.o.F. 1.79 1.31 1.14

The total valence density may be calculated directly from the model described earlier.
Very often bonding is illustrated by deformation-density mapping; the ‘deformation density’
is defined as the difference between the total electron density in the crystal and the superposition
of independent, spherically averaged atom densities (figure 2). This function may either be

0, 0, 0.5

0.5, 0, 0

1A

Ca

Si

Ni

Figure 2. The experimental deformation density for CaNi2Si2
in the (100) plane. A linear mesh of contour lines (distance:
0.1 electrons Å−3) is used.
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calculated by a Fourier synthesis, using observed or model structure factors, or from the
multipole model density expression. In the latter case the effect of atomic thermal vibrations
is deconvoluted within a rigid pseudo-atom approximation.

4. Band-structure calculation

The experimental results are compared with a calculation of the electronic band structure using
a FLAPW method [14] with a Hedin–Lundqvist exchange–correlation potential [15]. For the
l-expansion of the potential and the electron density, within the muffin-tin spheres, terms
up to l = 8 were taken into account. For the wavefunctions, plane waves in the interstitial
region were included up to a length of 42π/a. The chosen plane-wave basis corresponds to
approximately 560 basis functions. The self-consistency procedure has been performed with
330 k-points in the irreducible part of the Brillouin zone (BZ). The same mesh of k-points has
also been used for the calculation of the electron densities. The BZ integration was performed
by means of the linearized tetrahedron method [21]. The muffin-tin radii were chosen as 3 au
for Ca and 2 au for both Ni and Si.

Figure 3 shows the total density of states (DOS) and the most important local l-like
components, i.e. Si s and p, Ni d as well as the Ca s, p and d components. Starting at the
low-energy side, the first double peak has mainly Si s character and corresponds to bonding
and antibonding Si–Si s–s σ -bonds. The peak complex that follows after a gap of ≈0.1 Ryd is
due to overlapping Si p and Ni d states. The Ni d states near the Fermi level, which are occupied
to a large extent, can be shown to have mainly antibonding character since the bonds between
neighbouring Ni atoms are involved. The DOS reflects the essential bonding properties of this
compound, namely strong covalent bonds between the Si atoms at a distance of 2.49 Å and also
between the Si atoms and the Ni atoms, while for all Ni compounds with ThCr2Si2 structure
the strength of the bonds between neighbouring transition metals is reduced compared to that
for the corresponding Fe and Co compounds because of the occupation of antibonding d states.
The local partial DOS components in the Ca sphere show small but important contributions
to the total DOS of this compound over the whole energy range. The corresponding occupied
states are involved in covalent Ca–Ni, Ca–Ca and Ca–P bonds. A more detailed discussion of
the influence of Ca d (s, p) states on the analogous compound CaNi2P2, for which the bonding
situation is rather similar, can be found in reference [12].

5. Results and discussion

We will discuss the results in two ways. For certain aspects, such as the d-orbital occupation,
one can directly use the model parameters; for others the electron-density-distribution maps
have to be examined.

5.1. Atomic net charges

The number of valence electrons attributed to each atom may be defined in different ways.
From a multipole model refinement of the x-ray diffraction data this may be done by

eliminating all the non-spherically symmetric terms from the multipole model (a so-called κ-
refinement [22]): all parameters are kept fixed (scale factor, structural and secondary extinction
parameters) with the exception of the Ni 3d (PNi 00) and Si total valence electron counts (PSiV )
and the radial extension parameters, κ , for these two atoms. With this approach the total electron
density is in reality projected onto normalized, spherically symmetric, atomic-like functions,
and the coefficients represent numbers of electrons allocated to the individual atoms.
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CaNi2Si2
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Figure 3. Top: the total DOS (full line) and local partial DOS components for Si s (dotted line), Si
p (dashed line) and Ni d (dashed–dotted line). Bottom: the local partial DOS components for Ca
s (dotted line), p (dashed line) and d (dashed–dotted line). Units: one-electron states per Rydberg
and per unit cell.

Another approach is to integrate the total distribution of valence density according to
the multipole model within spheres centred at the atoms. This has the advantage of an easy
comparison with the results of LAPW-type calculations.

The resulting electron counts obtained from these approaches are reported in table 3.
We first notice that the multipole model fitted to the experimental data yields 25.3 instead
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of 30 valence electrons per formula unit. This lack of electrons is explained by the fact that
the diffracted intensities are not very sensitive to diffuse components of the electron-density
distribution. The κ-model projects out 28.6 electrons (see table 3).

Table 3. Atomic valence electron charges (net electron counts).

Kappa model Integration

Population κ RMT Q (x-ray) Q (LAPW)

Ni 4s 1.0 (—) 1.0 0.55a

1.06 9.0 8.45b

3d 7.3 (1) 1.04 (1) 7.94

Si 6.0 (1.0) 0.91 (3) 1.06 2.3 1.78

Ca 0 (—) — 1.59 <0 1.17

a Formally s- and p-type orbitals.
b Formally s-, p-, d- and f-type orbitals.

In the multipole model, the number of 4s electrons on Ni was, rather arbitrarily, kept equal
to one; as their distribution is very diffuse, they only contribute little to the diffraction.

The discrepancy between these ways of counting the electrons is even more pronounced
when comparing the results for Si; only about half of the electrons that the κ-model allocates
to this atom are within the ‘muffin-tin’ sphere. The fact that these electrons have such a diffuse
distribution leads also to quite inaccurate charges in the refinement with a standard error of
1.0 e−.

For an isolated silicon atom in the ground state, the number of valence electrons within
a sphere of radius 1.06 Å is 1.5. Therefore both the theory and the experiment indicate an
electron transfer towards silicon that is more pronounced in the latter case.

For the nickel atom the FLAPW calculation predicts about as many electrons in the 3d
shell as for the isolated atom. The experimental data correspond to a larger number of electrons
within the muffin-tin sphere, but this is mainly due to a diffuse density which should not be
characterized as 3d-like. The κ-refinement leads to a much smaller density, equivalent to 7.3
electrons. This is almost the same number as the one resulting from the complete multipole
model refinement.

5.2. Individual d-orbital populations of the Ni atom

The valence electron-density distribution in the vicinity of the Ni ion may be considered to be
mainly composed of contributions from the 3d orbitals and their hybridization with other more
diffuse states. Because of the way in which we have modelled the electron density, mainly
3d–3d products will project out. It has been shown by Holladay et al [23] that in this case
(assuming that the orbital moment is quenched) there is a one-to-one correspondence between
the multipole expansion coefficient Plm and the d-orbital population matrix. Because of the
site symmetry there are no mixed-product terms when referring to a coordinate system having
its axes parallel to the crystallographic axes. The resulting values are given in table 4. The
populations corresponding to the (more standard) choice of axes with x and y pointing towards
next-neighbour Ni ions are simply obtained by permuting the values for the dx2−y2 and dxy
orbitals.

The anisotropy in the d-orbital occupation also appears clearly in the electron-deformation-
density map (the total density minus superimposed independent-atom densities) shown in
figure 2.
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Table 4. d-orbital populations on Ni (standard errors are given in brackets).

dz2 1.57(3)
dxz 1.76(2)
dyz 1.76(2)
dx2−y2 0.96(3)
dxy 1.19(3)

It is observed that there are more electrons in the orbitals pointing out of the Ni layer.
For the in-layer dx2−y2 and dxy orbitals there is a slight preference for pointing in the direction
of the nearest Ni ions, though this difference is hardly statistically significant (it is controlled
by one parameter in the model, P44+, whose value differs from zero by a standard deviation
of 1.3).

5.3. Valence electron density

Theoretical and experimental valence electron-density maps in the planes of interest, namely
(100) containing Ca, Si and Ni, (110) containing Ca and Si and (001) through the Ni atoms, are
shown in figures 4–6. The experimental maps are so-called static maps, i.e. they are corrected
for thermal motions using a convolution approximation on an atomic level.

The experimental maps show pockets of non-physical negative density amounting to
−0.05 electrons Å−3. In general the experimental maps differ from the theory by less than

1A

Ca

Ca

Si

Si

Ni

Ni

Figure 4. Experimental (left) and calculated (right) valence electron distributions in the (100)
plane. A logarithmic grid of contour lines has been used (xi = 0.2 × 2i/3 electrons Å−3). The
long broken line is at a density of −0.05 electrons Å−3, the short broken line at 0 electrons Å−3

(see the text).
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1A

Si

Si

Ca

Si

Si

Ca

Figure 5. Experimental (left) and calculated (right) valence electron distributions in the (110)
plane through the Si and Ca atoms. The same grid lines as in figure 4 have been used.

1A

Ni

Ni

Ni

Ni

Figure 6. Experimental (left) and calculated (right) valence electron distributions in the (001)
plane through the Ni atoms. The same grid lines as in figure 4 have been used.

0.1 electrons Å−3. We estimate that the uncertainties in our static maps are of the order of
0.1 electrons Å−3 correlated over the resolution length of the diffraction experiment of about
0.5 Å. This may partly explain the differences between the numbers of valence electrons inside
the muffin-tin spheres and the lack of electrons in the unit cell. The latter point may also be
due to a poor accuracy in regions of very flat distributions of electron density which only affect
the scattering close to the forward direction, and that only weakly. We recall that the best
agreement with the data is obtained with an empty valence shell for the calcium pseudo-atom.
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While an accuracy of 0.1 electrons Å−3 may account for the discrepancy between experiment
and theory, one notices, however, qualitative differences, mainly in the Si–Si bond region ((100)
and (110) sections) and in the (100) plane concerning the Si–Ni interaction. This may be due to
a lack of accuracy for the weak reflections (l = 8n±1) which are very decisive for determining
the non-centrosymmetric component of the Si pseudo-atom density. If these reflections are
included in the refinement, additional non-physical negative-density pockets appear near the
nucleus of silicon, and this clearly shows that a reliable description of the electron density
is only feasible if these reflections are measured with a very high accuracy. The negative
pockets may also appear because of limitations in the multipole model; a model accounting for
both the Si–Si nearest neighbours and the Si–Ni interactions requires two multipoles breaking
the cylindrical symmetry about the Si–Si close contact. Owing to the high symmetry of the
silicon site (point group 4/mmm) the multipoles of lowest order with this property are y44+

and y54+ ∝ y44+ y10. The software is nevertheless limited to orders l � 4.
In fact multipoles of order higher than 2 project out d and f orbitals that are only weakly

populated. As seen from figures 4–6, the bond critical point† between next-neighbour silicons
is located outside the muffin-tin spheres, in a region in which the wavefunctions of the
theoretical calculation are projected onto plane-wave basis functions. The corresponding
electron density may be projected onto multipoles, but it is difficult to guess a priori the
appropriate shape of the radial functions, in contrast to the in-sphere part which is mainly
due to atomic-like s and p orbitals and expected to have a shape rather similar to those of the
isolated atom. With these limitations in mind, the experimental electron-density maps are in
good agreement with the theory. The theoretical electron density gives a more pronounced
impression of a covalent character of the short Si–Si contact. This is in agreement with the
observation that this distance varies little among the silicon-containing compounds of this
structure type.

The only feature in the deformation-density map (figure 2) which deserves notice is the
signature of the 3d-electron distribution of the nickel atoms.

In the nickel plane the density shows a deviation from circular symmetry with an extension
in the direction of next neighbours in agreement what we observe in terms of the orbital
populations, but opposite to what is found in the LAPW calculation.

In conclusion, we would like to stress the rather good agreement between experiment and
theory. There is a tendency for the experiment to predict a somewhat stronger anisotropy of the
nickel ion with close to single occupation of the d orbitals in the nickel plane. The experiment
also seems to favour a slightly higher degree of delocalization of the electrons.

In order to be more conclusive about these trends, other compounds of this structural family
must be studied, and it would be preferable if this was done with an improved experimental
accuracy—something which, according to this study, should clearly be possible.
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